
MODELING OF THE FLOW PARTS OF STATIONARY
CENTRIFUGAL COMPRESSOR MACHINES FOR
COMPRESSION OF REAL GASES. GASDYNAMIC TESTS
AND PROCESSING OF THEIR RESULTS.
I. THEORETICAL CALCULATIONS

G. N. Den and A. A. Malyshev UDC 621.515

Similarity numbers of the processes of compression of real gases in the stages of centrifugal compressor ma-
chines are given. A method for setting up promptly the thermal and calorific equations of state of the mix-
tures of real gases for the prescribed region of operation of a compressor machine is proposed. A procedure
for processing of experimental data obtained in gasdynamic tests with mixtures of real gases and for reduc-
tion of the results obtained to the nominal conditions of operation of the flow part is presented.

1. In 1939, V. F. Ris [1] considered the problem of similarity numbers of the processes of compression of
perfect gases in the case of adiabatic flows in the flow parts of centrifugal compressor machines. The engineering pro-
cedure of modeling of centrifugal compressor machines which was developed by him has made it possible to design
and manufacture more than 300 different types of centrifugal compressor machines at the Neva Engineering Works
alone [2].

To find the similarity numbers of flows in geometrically similar flow parts with the above-indicated assump-
tions of the properties of gases and in the absence of external heat exchange use was made of the π theorem of di-
mensional theory. Engineering practice has shown that, according to such similarity numbers as the Reynolds and
Prandtl numbers and the ratio of heat capacities, perfect-gas flow can be considered to be self-similar in many cases
and the basic, determining criteria are the flow coefficient and the conventional Mach number Mu if Mu > 0.6. The
method of modeling developed is based on the fulfillment of the requirement of equality of the conventional Mach
numbers and the flow coefficients in the model (initial) and designed (full-scale) geometrically similar flow parts. The
employment of the method of modeling in creating new types of centrifugal compressor machines spares one an ex-
pensive operational development of flow parts with the aim of ensuring warranty parameters. A drawback of the
method is its conservatism: a new machine cannot have a higher level of efficiency than its model. Improvement is
possible only due to the calculation-theoretical investigations and gasdynamic tests of small-size models, but these tests
are less difficult than tests and development work on full-scale machines. The bank of data obtained in testing models
and in check tests of full-scale machines ensures designing centrifugal compressor machines with any parameters re-
quired by the customer of the machine; however, in recent decades one has more frequently met with cases where
compressible gases and gas mixtures should be considered as real gases since the operating region must be located
either near the right-hand boundary curve on the thermal diagram or at such high pressures where the equations of
state significantly differ from the gas equations: the compressibility factor is Z ≠ 1.0, while the isobaric heat capacity
cp depends on the temperature T and the pressure p. Such operating conditions are characteristic of the turbocompres-
sors of steam refrigerating machines and centrifugal compressor machines for compression of natural gases conveyed
by gas mains or pumped into underground storages. This determines the necessity of developing modeling methods for
the processes of compression of real gases.

2. A system of the numbers of gasdynamic similarity of flows of viscous real gases can be obtained from
consideration of the differential equations of continuity, motion, and energy balance which are written in dimensionless
form without imposing in advance the restrictions on the properties of the gas, i.e., without taking into account the gas
equations [3]:
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here E is the tensor unit.
In the above equations, the dimensional quantities t, V, ρ, p, T, ∇ , i, µ, and λ are referred to the correspond-

ing scales t0, V0, ρ0, p0, T0, 1 ⁄ L0, i0, µ0, and λ0. In the general case, the equations describing real-gas flow contain
seven unknowns, i.e., ρ

__
, p

_
, T

__
, V

__
, i

_
, µ

__
, and λ

__
, dependent on the spatial coordinates, time, similarity numbers (Strouhal,

Froude, Euler, Reynolds, and Prandtl numbers), and dimensionless numbers V0
2 ⁄ i0 and cp0T0

 ⁄ i0. To close this system
of equations one must supplement it with the thermal and calorific equations of state f(p, ρ, T ) = 0 and i = i(ρ, T)
and the relations characterizing dynamic viscosity and thermal conductivity, i.e., µ = µ(p, T) and λ = λ(p, T).

Numerous forms of the thermal gas equation containing different numbers of constant coefficients have been
proposed [4].

The similarity numbers involved in Eqs. (1)–(3) are related to the scales (which are selected when the quan-
tities contained in the differential equations are made dimensionless) by the known relations

Sh = 
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2
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2
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 .

The specific selection of the scale L0, t0, and others is governed by the distinctive features of the problem in
question. In analyzing the operation of a turbocompressor stage [1], it is convenient to select the diameter of the im-
peller D2 and the time of one revolution as the scales and, for example, the radial component of the average velocity
of the flow in the exit cross section of the impeller cr2 as the velocity scale V0. Then

Sh = 
D2ω
2πcr2

 = 
u2

πcr2
 = 

1
πϕr2

 ,

where ϕr2 is the flow coefficient of the impeller [1]. If the average velocity of the flow in the entrance cross section
of the impeller c0 is taken as the characteristic velocity, the flow coefficient ϕr2 should be replaced by the flow coef-
ficient ϕ0 = c0

 ⁄ u2.
Having taken the values of the remaining quantities before the flow part of the stage pinit, Tinit, ρinit, µinit,

λinit, and cpinit as their scales, we obtain
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Here
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If the scale of the distribution density of body forces is F0 = ω2D2
 ⁄ 2, the Froude number is
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Having selected i0 = cpinitTinit as the enthalpy scale, we obtain
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 .

The system of similarity numbers which follows from the differential equations (1)–(3) does not yet involve
the Mach number Mu. This similarity number appears only after the introduction of the gas equations into considera-
tion.

The conventional Mach number is

Mu = u2
 ⁄ ainit ,

the isentropic velocity of sound before the flow part for real-gas flow is

ainit = √ 



dp
dρ



 s,init

 ;

on the other hand, we can assume that

ainit = √ kinit 
pinit

ρinit
 . (5)

These two formulas lead us to the determination of the coefficient kinit in the real gas which is an isentropic exponent
in the particular case of compression of a perfect gas and is equal to the ratio of the specific heat at constant pressure
cp and the specific heat at constant volume cv. The problem of determination of kinit has been considered in [5] in
greater detail. Having determined the value of the coefficient kinit in the real gas for the initial values of the parame-
ters p and ρ, we can pass from the Euu number to the Mu number.

According to (4) and (5),

Euu = 1 ⁄ (kinitMu
2) ,

since

Mu = u2  ⁄ √ kinit 
pinit

ρinit
 .

The flow velocity is close to the velocity of sound in different elements of the flow part, i.e., local Mach
numbers [1] depend on the specific geometry of the stage and the Mu number. When Mu < 0.5 flow can be set self-
similar in Mu, but when Mu > 0.5 an increase in Mu leads to a change in the maximum efficiencies of the stage and
deformation of the gasdynamic characteristics of the stage and the multistage section [1]. When Mu < 1.0, kinit has a
slight effect on the maximum value of the efficiency. In stationary centrifugal compressor machines, when D2 > 0.25,
the flow can usually be set self-similar in Reu, too. The approximate procedure of taking into account the influence of
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Reu on the efficiency is contained on [6]. The problem of the influence of the Pr number on gasdynamic charac-
teristics remains to be studied, in essence; however, taking into account the narrow range of variation of this number
in gases, we can assume that Pr has no effect on the gasdynamic characteristics of centrifugal compressor machines.

In the case of three-dimensional flows of a viscous gas for high Reynolds numbers, even if the gas can be
set perfect, it is still so difficult to solve the system of equations (1)–(3), supplemented with the relations closing it,
in practice that the energy loss in the stage cannot be obtained by pure calculation. Therefore, in evaluating the effi-
ciency and in engineering design calculations of centrifugal compressor machines, one has to rely on simplified proce-
dures, experimental data, and modeling based on the observance of the geometric similarity of flow parts and on the
equality of determining similarity numbers.

3. The engineering calculations of the flow parts of centrifugal compressor machines are carried out on the
basis of one-dimensional equations of mass, energy, and the first law of thermodynamics which hold for an elementary
streamline but extended to the entire cross section of the channel in question:

 d (ρcσ) = 0 , (6)

dH = dp ⁄ ρ + cdc + Tds , (7)

di = dp ⁄ ρ + Tds − dq . (8)

The last two relations yield that

dH = di + cdc + dq . (9)

For the flow-part portion of finite length confined, for example, between the initial and final cross sections of the
channel init–init and f–f, we have

Hinit−f = if − iinit + 0.5 (cf
2
 − cinit
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f
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In final form, instead of (6) we have

ρcσ = G . (12)

The relations given above contain the quantities ρ, c, p, T, i, H, s, and q to be determined. If it is taken that
heat exchange between the flow and the surfaces confining it is absent or negligibly small, then qinit−f = 0 and for the
closed system of equations to be obtained we must add to (6)–(9) or (10)–(12) four more dependences that determine
the thermal and calorific properties of the gas and can be written in the form

p = p (ρ, T) , (13)
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where cp
0 is the specific heat at constant pressure in an ideally gas state. To obtain the last, fourth, relation we must

make an assumption on the character of the process of compression, having taken, for example, that this process oc-
curs in accordance with the power-law dependence

p

ρm = 
pinit

ρinit
m

 , (16)

or in accordance with [7] we must assume that the specific heat of the process is constant in a given regime of op-
eration of the flow part. The latter case has been considered, for example, in [8]. Next we assume the validity of re-
lation (16).

The specific work Hinit–f expended on compressing the gas is determined by formula (10). The increase in the
potential and kinetic energies of the flow in traversal of the flow part is determined by the first two terms on the
right-hand side of formula (11). The internal efficiency of the flow part ηin can be found using the formula
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∫ 
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If qinit–f = 0 and the change in the kinetic energy 0.5(cf
2 − cinit

2 ) is negligibly small as compared to the change in the
enthalpy if − iinit and the potential energy, then formula (17) yields the relation determining the polytropic efficiency:
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As a definition of the polytropic efficiency, a differential expression following from [8] is recommended in [6]:

ηpol = (dp ⁄ ρ) ⁄ di .

This expression also yields formula (18).
When the power-law approximation (described by relation (16)) of the process of compression is employed

we have
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Formula (19) is substantially simplified in the case of compression of a perfect gas. The assumption of constancy of
ηpol along the flow part also simplifies the calculations.

4. In testing centrifugal compressor machines, one measures the values of pinit and pf and Tinit and Tf for dif-
ferent mass flow rates G and rotational frequencies of the rotor n to obtain gasdynamic characteristics, i.e., the depend-
ences of ηpol, the ratio of the pressures πf = pf

 ⁄ pinit, and the internal power Nin = G(if − iinit) on the volumetric
capacity Q = G ⁄ ρinit. The gas analysis must also establish the composition of the gas mixture in each regime of op-
eration of the machine. The latter issue virtually does not arise in testing air machines; however, the experience accu-
mulated in testing centrifugal compressor machines for compression of different gas mixtures at petrochemical
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enterprises points to the fact that the composition of the gas can substantially change in the course of the tests. There-
fore, to process experimental data and to reduce them to the nominal operating conditions of the machine one must
have a procedure for setting up promptly the equations of state of a gas mixture for each operating regime in testing.
This problem must be solved in the course of the tests themselves so as not to retard the processing of the data ob-
tained. One possible way of setting up the thermal equation of state of a gas mixture follows from [9], where it is
shown how the Benedict–Webb–Rubin (BWR) equation can be simplified by discarding the exponential terms. Then a
simplified BWR equation describes rather well the thermal properties of a real gas in the required region of operation
of the compressor (this region is always known).

The simplified BWR equation can be written in the form

Z = 1 + (B
__

 + A
__

 ⁄ Tred + C
__

 ⁄ Tred
3 ) pred

 ⁄ (ZTred) + (b
_
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_
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_
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Here

Z = p ⁄ (ρRT) ,   Tred = T ⁄ Tcr ,   pred = p ⁄ pcr ,

in this case pcr and Tcr are the pseudocritical parameters of the gas mixture.
The coefficients A

__
, B

__
, ..., b

_
, and c

_
 can be computed from the values of the compressibility coefficient which

have been found by the Lie–Kessler method [3, 4]; the tabular values of Z are contained in [4, 6]. They are given for
different values of the reduced parameters pred and Tred. The pseudocritical parameters of the mixture are computed
from the volume fractions of its components rj, the known critical parameters pcrj and Tcrj of these components, and
the acentricity coefficient ωj. The values of pcrj, Tcrj, and ωj for numerous substances are indicated, for example, in
[4]. When the data on the acentricity coefficient ωj are absent its value can be found from the normal boiling tem-
perature of a substance and the values of pcrj and Tcrj [3, 4]. To determine the coefficients of Eq. (20) that correspond
to a given composition of the gas mixture one must find its pseudocritical parameters and the acentricity coefficient,
select arbitrarily six pairs of the values of pred and Tred located in the operating region of the compressor, and set up
a system of algebraic equations which makes it possible to find the coefficients of Eq. (20). Employing the Lie–
Kessler tables available in [4, 6], from the pairs of the values of pred and Tred one should find Z computed from the
formula
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In dimensional form, the thermal equation of state is as follows:
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here a0, a1, a2, and a3 are the coefficients of the approximation polynomial for the specific heat at constant pressure
of the gas mixture in an ideal gas state cp

0 = a0 + a1T + a2T2 + a3T3. These coefficients are calculated from the volume
fractions of the components rj, their molecular masses, and the corresponding coefficients for the specific heat at con-
stant pressure a0j, a1j, a2j, and a3j of these components. The values of the coefficients a0, a1, a2, and a3 for a large
number of substances are given in [4].

When Eq. (20) is employed we have
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To determine the volumetric capacity Q one must find in advance the initial density ρinit from the experimen-
tal values of pinit and Tinit. For this purpose Eq. (21) is employed. The same equation makes it possible to compute,
from the experimental values of pf and Tf, the final density ρf and then the exponent m in relation (16):

m = ln 




pf
pinit




  ⁄ ln 





ρf

ρinit




 . (23)

The initial and final enthalpies iinit and if are computed using formula (22). Thereafter one can find ηpol using
(19).

5. In accordance with the theorem of a change in the momentum of the gas in the impeller [1, 8] in the ab-
sence of heat exchange between the flow and the walls confining it and 0.5(cf

2 − cinit
2 ) << if − iinit, the specific work ex-

pended on compressing the gas in the stage is

Hinit−f = if − iinit = u2
2χ . (24)

Here χ is the coefficient of power dependent on the geometry and the flow coefficient ϕr2 in the case of subsonic gas
flow in the impeller. Therefore, according to formula (19), we have

ηpol = 
m

m − 1
 
Euu

χ
 



πf

m−1
m  − 1




 . (25)

Relation (16) yields that the coefficient of change of the specific volume of the gas in the flow part is

kv = 
ρf

ρinit
 = πf

1 ⁄ m . (26)

Relations (25) and (26) provide a basis for engineering modeling of geometrically similar flow parts which are in-
tended for operation with different gases for different initial conditions and rotational frequencies of the rotors. The
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mass capacity of the stage G is related to the impeller width b2 and other characteristic quantities by the obvious re-
lation [1]

G = πb2D2u2ϕr2kv2 ρinit ,

in which kv2 is the coefficient of change of the specific volume of the gas in the impeller on the portion between the
initial cross section of the flow part and the exit cross section of the impeller. The internal power of the stage is

Nin = π 
b2

D2
 ϕr2 χkv2 ρinitD2

2
u2

3
 .

Consequently, under identical operating regimes of two geometrically similar stages, i.e., for the same flow coefficients
ϕr2, the same conventional Euler numbers Euu, and the same m, the polytropic efficiencies ηpol, the pressure ratios
πf, and the values of Nin

 ⁄ (ρinitD2
2u2

3) must turn out to be the same. This holds in the presence of the self-similarity of
flows in conventional Reu numbers and other numbers of gasdynamic similarity. If two flow parts are geometrically
similar but differ in the impeller diameters D2 and D2

′ , i.e., one is made on the scale I = D2
 ⁄ D2

′  in relation to the
other, then under the identical operating regimes ηpol

′  = ηpol, the volumetric capacities Q′, the increases in the enthalpy
if′  − iinit

′  and if − iinit, and the pressure ratios πf
′  and πf turn out to be related by the relations

Q
′
 = I

3
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n
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2
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′
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5
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



n′

n





3

 Nin .

The fulfillment of the condition m = m′ is required for the total similarity of the processes of compression; however,
in compression of real gases, this requirement cannot be fulfilled in practice even in the case of compression of one
and the same gas but with different pinit

 ⁄ ρinit and pinit
′  ⁄ ρinit

′ . Therefore, the rigorous fulfillment of the condition Euu
′

= Euu has to be abandoned in favor of the fulfillment of the condition kv
′  = kv. Assuming, as previously, that ηpol′ =

ηpol, we obtain

Euu
′
 = βm

2
 Euu , (27)

where

βm = √ m
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′ )
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








 .

The employment of this condition is equivalent to the assumption of a weak influence of Euu (with a small change in
it) on ηpol for ϕr2

′  = ϕr2. For higher values of Euu corresponding to Mu < 0.7 this assumption can be considered to be
quite justified.

Taking into account that pinit
 ⁄ ρinit = ZinitRTinit, from condition (27) we obtain

n′

n
 = 

1

Iβm
 √Zinit

′
R

′
Tinit

′

ZinitRTinit

(28)

and the modeling scale

I = βm 

4

√ZinitRTinit

Zinit
′

R
′
Tinit

′
 √ Q

′

Q
 .

(29)
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In designing a new machine by the modeling method, Q′, πf
′ , and the initial conditions for it are prescribed;

only m′ is unknown. The problem is reduced to selection of the design point on the available hydrodynamic charac-
teristics of the initial model. It must be found at a sufficient distance from the boundary of stalling and surging and
the efficiency at it must be sufficiently high. The selection of the design point on the hydrodynamic characteristics of
the model makes it possible to find Q, πf, n, χ, ηpol, and m. This enables us to calculate βm and find m′. Next we
determine the modeling scale I and the rotational frequency of the rotor of the designed machine n′. For the modeling
method to be employed the designer must have at his disposal a set of hydrodynamic characteristics for several flow
parts that can be employed as model ones.

The problem of determination of the "equivalent" rotational frequency ne in bench tests of a new machine op-
erating with air or other modeling gas is adjacent to the problem of selection of the modeling scale. In this case

I = 1 ,    ne = n′βm √ZinitRTinit

Zinit
′

R
′
Tinit

′
 .

The coefficient βm is calculated for the design regime of operation of the flow part. In the case where a centrifugal
compressor machine is intended for operation with a gas heavier than air the equivalent rotational frequency can turn
out to be higher than the operating frequency n′ and to ensure the strength of the rotor in bench tests it will be re-
quired to manufacture the rotor from stronger materials or to carry out tests on a closed test loop with a modeling gas
heavier than air.

Formulas to convert the hydrodynamic characteristics to another rotational frequency n′′  differing from the
equivalent one are based on the violation of the requirement kv

′  = kv
′′  and the similarity of Euu

′  and Euu
′′ .  When the

conversion formulas are used one actually assumes the self-similarity in the Euu number. For identical regimes in the
case of one and the same machine we have

Q
′
 = 

n′′

n′
 Q

′
 
kv2

′′

kv2
′

 ,   if
′′ − iinit

′′  = 







n′′

n′








2

  if
′  − iinit

′ 
  ,   πf

′′  = 






1 + 

m′′  − 1

m′′
 
ρinit

′′

pinit
′′

 ηpol
′   if

′′  − iinit
′′ 










m′′

m′′−1
 . (30)

It is assumed that ηpol
′′  = ηpol

′ .
These formulas yield rather good results in conversions of the hydrodynamic characteristics of single-stage

machines [8] but in the case of multistage uncooled sections they provide only approximate results. For a more accu-
rate conversion one must determine the dimensionless hydrodynamic characteristics of all the stages from experimental
data and from these characteristics calculate the total dimensional hydrodynamic characteristics of the section under
new operating conditions.

The conversions for m′′  ≠ m′ involve difficulties associated with the determination of m′′ . As a result of the
conversion the increase in the enthalpy ∆i′′  = if′′  − iinit

′′  turns out to be known but it is necessary to know the final den-
sity ρf

′′  and final temperature Tf
′′  and to solve the system of equations which enables us to determine m′′ . For this pur-

pose we have to obtain the dependences ρf
′′(Tf

′′), pf
′′(Tf

′′), and m′′(Tf
′′) and only after that to determine the sought value

of πf
′′ .

With the known ∆i′′ , the thermal and calorific equations of state (21) and (22) yield the quadratic equation for
ρf

′′ :

ρ
__

f
 ′′

2

 + 2 
2A
__

 Tred.f
′′

2

 + B
__

 Tred.f
3

 + 4C
__

3a
_

 Tred.f
′′

2

 + 2b
_

 Tred.f
′′

3

 + 5c
_ ρ

__
f
 ′′  + 

2Tred.f
′′

2

R
′′
Tcr

′′  
∆i′′ + iinit

′′  − if
0′′

3a
_

 Tred.f
′′

2

 + 2b
_

 Tred.f
′′

3

 + 5c
_ = 0 ,

in which the enthalpy of the end of compression for an ideal gas state is
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if
0′′ = 







a0

′′ + 
a1

′′

2
 Tf

′′
 + 

a2
′′

3
 Tf

′′
2

 + 
a3

′′

4
 Tf

′′
3





 Tf

′′
 ,   ρ

__
f
 ′′  = 

R
′′
Tcr

′′

pcr
′′

 ρf
′′  ;   Tred.f

′′
 = 

Tf
′′

Tcr
′′

 .

The final pressure is determined by Eq. (21), while the value of m is determined by formula (23). The graphical
method of solution of the problem is obvious. Having constructed the dependences m′′(Tf

′′) and πf
′′(Tf

′′), we can find the
point of intersection of πf

′′(Tf
′′) and the curve constructed in accordance with formula (30).

The method of determination of m and πf can be programmed for calculation on a personal computer; then
graphical constructions become unnecessary.

NOTATION

ρ, p, and T, density, pressure, and temperature; t, time; V, velocity; ∇ , Hamilton operator; F, distribution den-
sity of body forces; T and S, tensors of viscous stresses and strain rates; µ, dynamic viscosity; λ, thermal conductivity;
cp, specific heat at constant pressure; i and s, enthalpy and entropy; a, isentropic velocity of sound; k, coefficient in
the formula for the velocity of sound; L0, linear scale in making the quantities dimensionless; Sh, Fr, Re, Eu, Pr, and
M, Strouhal, Froude, Reynolds, Euler, Prandtl, and Mach numbers; D2, diameter of the impeller; u2, circular velocity;
cr2, radial component of the velocity at the exit from the impeller; ϕr2, flow coefficient; ω, rotational velocity; ωj,
acentricity coefficient; σ, cross-sectional area; c, average velocity of the gas; H, work expended on compressing; q,
heat removed from the gas; ηin and ηpol, internal and polytropic efficiencies; Nin, internal power; χ, power factor; πf,
pressure ratio; m, exponent of the process of compression; Reu, Euu, and Mu, conventional Reynolds, Euler, and Mach
numbers; G and Q, mass and volumetric flow rates; I, modeling scale; n, rotational frequency; A

__
, B

__
, C

__
, a

_
, b

_
, and c

_
,

coefficients of the simplified dimensionless BWR equation; R, gas constant; rj, volume concentration of the jth com-
ponent of the gas mixture; pcr and Tcr, critical parameters of the gas or pseudocritical parameters of the gas mixture;
pred and Tred, parameters referred to pcr and Tcr respectively. Subscripts and superscripts: 0, scales of the quantities in
making them dimensionless; –, dimensional quantity referred to its scale; init and f, quantities on the initial and final
cross sections of the flow part; r, radial; in, internal; pol; polytropic; red, reduced; cr, critical; e, equivalent.
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